Overdetermined problems for the normalized 𝑝-Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overdetermined boundary value problems for the ∞-Laplacian

We consider overdetermined boundary value problems for the ∞-Laplacian in a domain Ω of Rn and discuss what kind of implications on the geometry of Ω the existence of a solution may have. The classical ∞-Laplacian, the normalized or game-theoretic ∞-Laplacian and the limit of the p-Laplacian as p→∞ are considered and provide different answers. Mathematics Subject Classification (2000). 35R35, 4...

متن کامل

Existence problems for the p-Laplacian

We consider a number of boundary value problems involving the p-Laplacian. The model case is −∆pu = V |u|p−2u for u ∈ W 1,p 0 (D) with D a bounded domain in R. We derive necessary conditions for the existence of nontrivial solutions. These conditions usually involve a lower bound for a product of powers of the norm of V , the measure of D, and a sharp Sobolev constant. In most cases, these ineq...

متن کامل

STEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN

Under suitable assumptions on the potential of the nonlinearity, we study the existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian. Our approach is based on variational methods.

متن کامل

Constructing cospectral graphs for the normalized Laplacian

We give a method to construct cospectral graphs for the normalized Laplacian by swapping edges between vertices in some special graphs. We also give a method to construct an arbitrarily large family of (non-bipartite) graphs which are mutually cospectral for the normalized Laplacian matrix of a graph. AMS 2010 subject classification: 05C50

متن کامل

Eigenvalues of the normalized Laplacian

A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society, Series B

سال: 2018

ISSN: 2330-1511

DOI: 10.1090/bproc/33